configuration, as the other possibility, H-6 and H-8 α -orientated, did not explain the observed shifts. Consequently, the new diterpene was 7-oxo-6 α -hydroxy-hardwickiic acid lactone (1). Obviously, further species of *Pulicaria* will have to be investigated to clarify the chemotaxonomy of this genus. So far relationships to *Inula* can be stated though this genus does not appear very uniform with regard to its chemistry.

EXPERIMENTAL

The air-dried plant material (250 g), collected near Teheran (voucher A. R. 115) was extracted with Et₂O-petrol (1:2). CC (Si gel) and TLC (Si gel) of the polar fractions (Et₂O-CH₂Cl₂, 2:1) gave 30 mg colourless crystals (1), mp 161°. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1785, 1750, 1690, 1605, 1515, 885; MS m/z (rel. int.): 328.167 [M]⁺ (42), 313 [M - Me]⁺ (8), 233 [M - CH₂CH₂ furane]⁺ (19), 205

 $[233 - CO]^+$ (20), 95 $[^+CH_2CH_2$ furane $]^+$ (91), 81 $[pvrilium]^+$ (100);

$$[\alpha]_{24^{\circ}}^{\frac{1}{2}} = \frac{589}{-62.3} \frac{578}{-65.0} \frac{546 \text{ nm}}{-74.9} (c = 2.39, \text{ CHCl}_3).$$

Acknowledgement—A.R. thanks the University campaign for the reconstruction of Iran for financial support.

REFERENCES

- Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes, p. 355. Academic Press, New York.
- Bohlmann, F., Knoll, K.-H. and El-Emary, N. A. (1979) Phytochemistry 18, 1231.
- Schulte, K. E., Reisch, J. and Hopman, J. (1963) Arch. Pharm. 296, 353.
- Schulte, K. E., Reisch, J. and Müller, F. (1968) Arch. Pharm. 301, 115.

Phytochemistry, Vol. 20, No. 12, 2773-2775, 1981. Printed in Great Britain.

0031-9422/81/122773-03 \$02.00/0 © 1981 Pergamon Press Ltd.

GUAIANOLIDES FROM CENTAUREA CANARIENSIS*

FERDINAND BOHLMANN and RAJINDER K. GUPTA

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Received 20 March 1981)

Key Word Index — Centaurea canariensis; Compositae; sesquiterpene lactones; guaianolides; costic acid derivative.

Abstract—The aerial parts of *Centaurea canariensis* afforded four new guaianolides, all closely related to dehydrocostus lactone, and a derivative of costic acid. The structures were elucidated by spectroscopic methods.

INTRODUCTION

Many species from the large genus *Centaurea* (tribe Cynareae) have been investigated chemically. In addition to polyacetylenes [1] several sesquiterpene lactones [2] have been isolated. *C. canariensis* Brouss. var. *subexpinnata* Burch. also contains acetylenes and several sesquiterpene lactones, all closely related to dehydrocostus lactone.

RESULTS AND DISCUSSION

The roots of *C. canariensis* afforded the tetrayne 1 and aplotaxene (2), while the aerial parts gave capillol acetate

(3) [1], germacrene D, bicyclogermacrene, γ - and δ cadinene and five new compounds, the costic acid derivative 4 and four guaianolides (7-10). 4 after addition of diazomethane afforded on oxidation the ketone 6. The ¹H NMR data of 4 and 6 (Table 1) clearly showed that 4 was a derivative of costic acid. Spin decoupling allowed the assignment of all signals. The position of the hydroxy group followed from the ¹H NMR data of the corresponding ketone 6. The downfield shift of the broadened singlets of H-15 agreed only with a keto group at C-3. The small coupling $J_{2,3}$ required a 3β -hydroxy group. The stereochemistry at C-5 and C-7 followed from the couplings observed for H-5 and H-7. Consequently, the ¹H NMR data were in part very similar to those of costic acid. The ¹H NMR data of 7, 9 and 10 were close to those of 8α -senecioyloxy dehydrocostus lactone [3]. (Table 1). Spin decoupling allowed the assignment of all

^{*}Part 372 in the series 'Naturally Occurring Terpene Derivatives'. For Part 371, see Bohlmann, F. and Zdero, C. (1981) *Phytochemistry* **20** 2529.

Table 1. ¹H NMR spectral data of compounds 4 and 6-10 (400 MHz, CDCl₃, TMS as internal standard)

4 (C ₆ D ₆)	6	7	8*	9	10
H-1 5.40 dd H-2 α H-2 β 5.47 dd β H-3 α H-3 β 5.32 s (br)	6.00 d 6.85 d	2.99 ddd } 1.83 m 2.44 m 2.51 m	2.93 ddd 1.91 m 1.85 m 2.48 m 2.54 m	2.99 ddd 1.84 m } 2.45 m 2.54 m	3.00 ddd 1.83 m 2.45 ddddd 2.53 m
H-6β 1.41 dddd	1.88 d (br) 1.77 d (br) 1.62 m r)2.64 dddd (br	2.81 dd (br) - 3.96 dd 2.83 ddddd	2.81 dd (br) 3.89 dd 2.48 m	2.82 dd (br) 4.05 dd 3.21 ddddd	2.83 dd (br) 4.04 dd 3.23 ddddd
H-8 α 1.59 dd (br) H-8 β 1.34 m H-9 α H-9 β	1.75 m 1.6 m 1.5 m	— 3.92 ddd 2.69 dd 2.26 dd	3.71 m 2.70 dd 2.14 dd	5.07 ddd 2.70 dd 2.34 dd	
H-13 6.34 s (br) H-13' 5.36 s (br) H-14\ H-14'\ 0.79 s	, ,	$ \begin{array}{c} 6.27 \ d \\ 6.15 \ d \\ 5.05 \ s \ (br) \\ 4.93 \ s \ (br) \end{array} $	1.40 d 4.94 s (br) 4.91 s (br)	6.23 d 5.62 d 5.04 s (br) 4.92 s (br)	6.22 d 5.62 d 5.05 s (br) 4.91 s (br)
H-15 5.32 s (br) H-15' 4.69 s (br) OCOR —	6.08 s (br) 5.17 s (br)	5.28 s (br) 5.07 s (br)	5.22 s (br) 5.04 s (br)	5.29 s (br) 5.09 s (br) 6.18 s (br)	5.28 s (br) 5.04 s (br) 6.33 s (br)
OMe	3.77 s	_	_	5.67 s (br) 1.95 s (br)	5.96 s (br) 4.38 s (br)

^{*} H-11, dq 2.54.

J(Hz): compound 4: 1,2 = 10; 1,3 = 1.5; 2,3 = 2.5; 5,6 β = 6 α ,6 β = 6 β ,7 α = 12; 6 α ,7 α = 7 α ,8 α = 3; 7 α ,8 β = 12; 8 α ,8 β = 13; 8 α ,9 α = 4; compound 6: 1,2 = 10; 5,6 β = 6 α ,6 β = 6 β ,7 α = 12; 6 α ,7 α = 7 α ,8 α = 3; compounds 7-10: 1,2 α = 1,2 β = 1,5 = 8.5; 5,6 = 10; 6,7 = 9; 7,13 = 3.5; 7,13′ = 3.0; 7,8 = 10; 8,9 α = 5; 8,9 β = 4.5 (compound 8: 7,8 β = 8; 7,11 = 10.5; 11,13 = 7; compound 10: 3 α ,3 β = 17; 2 α ,3 α = 2 β ,3 α = 8.5; 3 α ,15 = 2).

Short Reports 2775

signals, especially those of the main constituent 10, where only a few signals were overlapped multiplets. The stereochemistry followed from the couplings observed for H-1, H-5, H-7 and H-8, while the nature of the oxygen function at C-8 was easily deduced from the typical ¹H NMR signals. In the ¹H NMR spectrum of 8 (Table 1) only a few signals were slightly different from those of 7. However, the missing signals of methylene protons (H-13) were replaced by a methyl doublet at δ 1.40 and a doublet quartet at δ 2.54, indicating the presence of a dihydro derivative of 7. The stereochemistry at C-11 followed from the large coupling $J_{7,11}$. 10 is a 3-desoxy derivative of cynaropicrin, which has been reported several times from the genus Centaurea [4-8]. Highly oxygenated germacranolides, however, are much more widespread [2].

EXPERIMENTAL

The air-dried plant material (collected from Tenerife, voucher 80/1480, deposited in the Herbarium of the Institute of Plant systematic, Göttingen) was extracted with Et₂O-petrol (1:2) and the resulting extracts were sepd by CC (Si gel) and repeated TLC (Si gel). Known compounds were identified by comparison of their IR and ¹H NMR spectra with those of authentic material. The roots (10 g) afforded 2 mg 1 and 10 mg 2, while the aerial parts (200 g) gave 50 mg germacrene-D, 50 mg bicyclogermacrene, 5 mg γ - and 20 mg δ -cadinene, 5 mg 3, 3 mg 4 (Et₂O-petrol, 3:1), 2 mg 7 (Et₂O-petrol, 1:1), 2 mg 8 (Et₂O-petrol, 1:1), 2 mg 9 (Et₂O-petrol, 1:1) and 20 mg 10 (Et₂O-petrol, 3:1).

3-Oxo-1,2-dehydrocostic acid (4). Colourless gum, IR $v_{\rm max}^{\rm CCl}$, cm $^{-1}$: 3580 (OH), 3500–2700, 1690, 1620 (C=CCO₂H); MS m/z (rel. int.): 248.141 [M] $^+$ (81) (C₁₅H₂₀O₃), 230 [M - H₂O] $^+$ (24), 215 [230 - Me] $^+$ (32), 202 [230 - CO] $^+$ (30), 187 [202 - Me] $^+$ (37), 91 [C₇H₇] $^+$ (100);

$$[\alpha]_{24}^{3} = \frac{589}{+18} \frac{578}{+19} \frac{546}{+22} \frac{436 \text{ nm}}{+23} (c = 0.15, \text{ CHCl}_3).$$

To 3 mg 4 in 1 ml Et₂O was added excess CH_2N_2 . TLC (Et₂O-petrol, 1:1) afforded 3 mg 5, which was stirred with 50 mg MnO₂ in 2 ml Et₂O for 2 hr. TLC (Et₂O-petrol, 1:3) afforded 2 mg 6, colourless gum; MS m/z (rel. int.): 260.141 [M]⁺ (53) ($C_{16}H_{20}O_3$), 245 [M - Me]⁺ (37), 228 [M - MeOH]⁺ (56), 213 [228 - Me]⁺ (23), 200 [228 - CO]⁺ (51), 185 [200 - Me]⁺ (47), 91 [C_7H_7]⁺ (100).

 8α -Hydroxydehydrocostus lactone (7). Colourless crystals, mp 106° (Et₂O-petrol), IR $\nu_{\rm mHCl}^{\rm CHCl}_3$ cm $^{-1}$: 3600 (OH), 1770 (γ -

lactone); MS m/z (rel. int.): 246.126 [M]⁺ (5) (C₁₅H₁₈O₃), 228 [M - H₂O]⁺ (38), 91 (78), 69 (100);

$$[\alpha]_{24}^{2} = \frac{589}{+76} \frac{578}{+84} \frac{546}{+100} \frac{436 \text{ nm}}{+156} (c = 0.1, \text{ CHCl}_3).$$

8α-Hydroxy-11β,13H-dehydrocostus lactone (8). Colourless gum, IR $v_{\max}^{\rm CCl}$ cm⁻¹: 3620 (OH), 1790 (γ-lactone); MS m/z (rel. int.): 248.149 [M]⁺ (18) (C₁₅H₂₀O₃), 230 [M - H₂O]⁺ (21), 202 [230 - CO]⁺ (10), 158 [202 - CO₂]⁺ (63), 107 (100), 91 (79), 79 (85), 71 (85), 69 (63); [α]_D = +16°(c = 0.1, CHCl₃).

8α-Methacryloyloxy dehydrocostus lactone (9). Colourless gum, IR $\nu_{max}^{CCl_4}$ cm⁻¹:1790 (γ-lactone), 1730 (C=CCO₂R); MS m/z (rel. int.): 314.152 [M]⁺ (0.3) (C₁₉H₂₂O₄), 228 [M - RCO₂H]⁺ (28), 213 [228 - Me]⁺ (2), 200 [228 - CO]⁺ (9), 69 [C₃H₅CO]⁺ (100);

$$[\alpha]_{24}^{\lambda} = \frac{589}{+102} \frac{578}{+110} \frac{546}{+128} \frac{436 \text{ nm}}{+165} (c = 0.1, \text{ CHCl}_3).$$

3-Desoxycynaropicrin (10). Colourless gum, IR $\nu_{\text{max}}^{\text{CCI}_4}$ cm⁻¹: 3500 (OH), 1770 (γ-lactone), 1720, 1640 (C=CCO₂R); MS m/z (rel. int.): 330 [M]⁺ (0.1), 312 [M - H₂O]⁺ (0.2), 228.115 [M - RCO₂H]⁺ (100) (C₁₅H₁₆O₂), 213 [228 - Me]⁺ (7), 200 [228 - CO]⁺ (7), 85 [HOC₃H₄CO]⁺ (20);

$$[\alpha]_{24}^{\lambda} = \frac{589}{+112} \frac{578}{+117} \frac{546}{+133} \frac{436 \text{ nm}}{+183} (c = 2.0, \text{ CHCl}_3).$$

Acknowledgements — We thank the Deutsche Forschungsgemeinschaft for financial support and Prof. Dr. G. Wagenitz, Göttingen, for identification of the plant material.

REFERENCES

- 1. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes, p. 452. Academic Press, New York.
- Fischer, N. H., Olivier, E. J. and Fischer, H. D. (1979) Prog. Chem. Nat. Prod. 38, 48.
- Bohlmann, F., Brindöpke, G. and Rastogi, R. C. (1978) Phytochemistry 17, 475.
- Ohno, N., Hirai, H., Yoshioka, H., Dominguez, X. A. and Mabry, T. J. (1973) Phytochemistry 12, 221.
- Gonzales, G. A., Bermejo, J. and Massanet, G. (1977) Rev. Latinoam. Quim. 8, 176.
- Gonzales, G. A., Bermejo, J., Cabrera, I., Massanet, G., Mansila, H. and Galindo, A. (1978) Phytochemistry 17, 955.
- Gonzales, A. G., Darias, V., Alonso, G. and Estevez, E. (1980) Plant. Med. 40, 179.
- 8. Rustaiyan, A., Niknejad, A., Zdero, C. and Bohlmann, F. (1981) *Phytochemistry* **20** (in press).